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Abstract
The coherent Hall effect of charge carriers is the quantum mechanical analogue
of the classical Hall effect for the case where the charge carriers are a coherent
ensemble of wavepackets. Kosevich considered this effect for the first time
for semiconductor superlattices subjected both to an electric field along the
growth direction and to a perpendicular magnetic field (Kosevich Y A 1999
Ann. Phys. 8 SI-145; 2001 Phys. Rev. B 63 205313). The dynamics of the
charge carriers can be described successfully by means of a semiclassical
model mapping the equation of motion to a simple pendulum equation with
the deflection angle in the case of the pendulum being replaced by the k-
vector of the wavepackets along the superlattice’s growth direction. While
Kosevich has presented an analytical treatment of the equation of motion, we
numerically solve it and compute the real-space and k-space trajectories of the
charge carriers. We thus arrive at a more illustrative and detailed analysis
of the wavepacket dynamics and make predictions for optical pump–probe
experiments which detect either the terahertz radiation emitted by the oscillating
charge carriers or the internal electric field as a function of time after impulsive
excitation of charge carriers.

1. Introduction

Since the early 1990s, the investigation of coherent phenomena of charge carriers in artificial
semiconductor structures, such as quantum wells and superlattices, ranks with the most
exciting topics in solid-state physics. Among these manifestations of the wave nature of the
charge carriers are Bloch oscillations (BOs), spatiotemporal oscillations expected to occur
in any periodic potential (as that of any crystal) under the influence of a static electric bias
field [1–4]. It took more than half a century from the first prediction of their existence to their
first experimental observation in semiconductor superlattices, i.e., one-dimensional artificial
lattices, by means of time-resolved laser spectroscopy [4–14].
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In a semiclassical treatment, the angular BO frequency is proportional to both the spatial
period d of the lattice potential and the electric field E :

ωB = eEd

h̄
. (1)

Typical superlattice periods are on the order of tens to hundreds of Å, i.e., by a factor of 10–
100 larger than lattice periods of bulk semiconductors, resulting in BO frequencies in the THz
regime, higher than the charge carriers’ scattering rates at low temperatures. For bulk materials,
the search for BOs has been unsuccessful until now. The high bias fields needed here either
lead to competition with other phenomena such as Zener tunnelling [4] or to destruction of the
material.

The appearance of an oscillatory electric current in a constant electric field contradicts
Ohm’s law, which predicts a stationary current. However, Ohm’s law is an approximative
description of carrier dynamics only valid in the classical limit. It does not hold immediately
after the impulsive optical excitation of coherent wavepackets of charge carriers. It takes several
scattering events to destroy their phase coherence and to enter the validity regime of Ohm’s
law. For superlattices excited close to the band-edge and at temperatures of several kelvin, this
timescale is on the order of one to several picoseconds. During the dephasing time (also called
coherence time here), one is able to investigate the manifestations of the coherent nature of the
charge-carrier wavepackets. In this sense, BOs can be understood as the coherent analogue of
transport according to Ohm’s law.

Based on this knowledge, we intend to investigate the coherent analogue of the classical
Hall effect as another, more complex solid-state phenomenon, arising upon transport of
coherent charge-carrier wavepackets under the influence of a static magnetic field. While
the classical Hall effect, as a manifestation of the particle nature of the charge carriers, is
characterized by the build-up of a dc voltage (the Hall voltage), the coherent Hall effect of
wavepackets is an ac-current phenomenon. One has to note that, despite the similarity in
names, the effect is not directly related to the famous integer and fractional quantum Hall
effects [15, 16]. While the latter are stationary manifestations of the wave nature of the charge
carriers predominantly investigated in two-dimensional electron gases at low temperature, the
former is a transient effect only arising upon superposition of wavefunctions and formation of
wavepackets also in three-dimensional quantum systems in a Hall-type field situation.

We concentrate now on the investigation of the coherent Hall effect in superlattices, thus
extending the research on BOs in superlattices to the case where an additional magnetic
field is applied to the structure perpendicular to the electric field. The first theoretical
study of such a system was performed by Kosevich based on an analytical treatment of the
semiclassical equation of motion [17, 18]. Kosevich showed that the equation can be mapped
to a simple pendulum equation. He predicted that its two fundamental solutions, corresponding
to the oscillating and the rotating pendulum, respectively, have their analogues in two clearly
separated regimes of motion of the charge carriers in the superlattice. While both regimes
exhibit an oscillatory current along the direction of the classical Hall current, the dependence
of the frequency on the applied electric and magnetic fields is very different.

Subsequent to Kosevich’s predictions, we observed the ac current experimentally during
the coherence time of impulsively excited carriers by applying a contactless measurement
technique, time-resolved terahertz-emission spectroscopy [19, 20]. Additional information was
obtained later with the help of time-resolved internal-electro-optic-sampling spectroscopy [21].

Recently, in light of fascinating dc current–voltage investigations of electron transport
in non-perpendicular electric and magnetic fields aiming at evidence for chaotic carrier
motion [22–24], we have extended our time-resolved studies, both theoretical and
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Figure 1. Scheme of the field geometry showing the directions of the electric field E and the
magnetic field B in the superlattice. E is oriented along the superlattice growth direction while B is
parallel to the superlattice layers.

experimental [25, 26], to arbitrary angles between the electric and magnetic fields. We have
found evidence for a coherent coupling between Bloch and in-plane cyclotron oscillations
in analogy to the Fiske effect of superconductor Josephson junctions coupled to an
electromagnetic resonator. This work is, however, not the subject of the present publication.

The paper is organized as follows. In section 2, we outline the semiclassical single-
particle model and put forth the analogy between the wavepacket dynamics and the motion
of the classical pendulum to explain the existence of the two regimes of motion and to discuss
in detail the expected dependence of the oscillation frequency on the electric and magnetic
field strengths. Section 3 then deals with numerical results obtained for the parameters of a
GaAs/AlGaAs superlattice structure employed in our past and ongoing experimental studies
(1.7 nm thick Al0.3Ga0.7As barriers and 9.7 nm thick GaAs wells). We present the trajectories
of the charge carriers in real space and k-space, emphasizing the nonlinear character of the
wavepacket motion in the spatial amplitude and the frequency spectrum of the oscillations in
the two regimes of motion. We calculate the expected signals for two kinds of measurement
techniques, THz-emission and internal electro-optic sampling spectroscopy.

2. Semiclassical model

2.1. Equation of motion

In this section, we set forth the equation of motion of a charged particle in a superlattice within
the semiclassical single-band picture, following the treatment of [17, 18]. The semiclassical
approach, where the wave nature of the charge carriers enters only via the superlattice band
structure, has been found to be very successful in capturing the dominant features of the
coherent-transport phenomena considered here [19].

The charge carrier is under the influence of both an electric field E, which is oriented along
the superlattice growth direction denoted as the x-direction, and a magnetic field B, which is
parallel to the semiconductor layers and whose direction defines the orientation of the z-axis
(see figure 1). The build-up of a Hall electric field is considered negligible, (i) because we
investigate only the first few picoseconds after impulsive excitation of the charge carriers at
a low density, and (ii) because of screening by the contacts which sandwich the superlattice.
If not mentioned otherwise, we will neglect dephasing, which mainly leads to an exponential
damping of the coherent signals.

We furthermore consider only the single-particle effects. Basic Coulomb corrections for
moderate carrier density have been addressed by Kosevich [17, 18]. They modify the findings
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to be presented in the following by shifting the characteristic oscillation frequencies. It turns
out that, for sufficiently low carrier density (see below), all results obtained by the single-
particle model remain valid if the cyclotron frequency ωC (see equation (12)) is replaced by the
frequency � given by �2 = ωC

2 + ωP‖2 + ω2
0. Here, ωP‖ = √

nq2/mxεε0 is the frequency of
the collective magneto-plasma oscillations of the charge carriers along the growth axis of the
superlattice. The ω2

0-term accounts for a blue-shift of �2 resulting from the effective electron–
hole potential. The shift amounts to ω2

0 = γ q2/mx a3
Bεε0, with aB = h̄24πεε0/m∗q2 being

Bohr’s radius. The dimensionless parameter γ is related to the exciton binding energy and could
be determined experimentally to be γ ≈ 0.1/4π ≈ 8 × 10−3 [27]. Note that the corrections
are only meaningful if ωP‖, ω0 < ωC, respectively ωP‖, ω0 < ωB, otherwise the two regimes
of motion do not exist. For their observation, experiments hence have to be performed at
sufficiently low carrier densities.

On this basis, the dynamics of the wavepackets is determined by the Lorentz force FL

h̄ k̇ = FL = q (E + v × B) (2)

and the general dispersion relation

v = 1

h̄

∂ε(k)

∂k
. (3)

h̄, q , and k denote Planck’s constant divided by 2π , the charge carrier’s electric charge, and
its wavevector, respectively. The group velocity v is proportional to the first k derivative of the
miniband energy ε(k). In the framework of a tight-binding calculation, ε(k) is cosine shaped
along the superlattice growth direction [29, 30]. Parallel to the semiconductor layers, ε(k) has
the typical paraboloidal shape of the bulk semiconductor material characterized by its constant
effective mass m∗:

ε(k) = �

2
[1 − cos (kxd)] + h̄2

2m∗
(
k2

y + k2
z

)
. (4)

� denotes the width of the miniband of the superlattice, d the spatial period. Due to (3) and (4),
the velocity components are given by

vx = �d

2h̄
sin (kxd) , vy, z = h̄

m∗ ky, z . (5)

The evaluation of the vector product in equation (2) is simplified by the chosen field geometry.
k̇ evaluates to

k̇ = (k̇x, k̇y, k̇z) = q

h̄

(
E + vy B, −vx B, 0

)
. (6)

The solution of kz is a constant kz(t) = kz(0), which will be omitted from now on. Using
equation (5), the velocities vx and vy in equation (6) can be eliminated, resulting in two coupled
differential equations

k̇ = (k̇x, k̇y) = q

h̄

(
E + h̄

m∗ Bky, −�d

2h̄
B sin (kxd)

)
. (7)

With the miniband dispersion being cosine shaped, the miniband width � and the effective
mass mx at the bottom of the miniband are related to each other:

�d

2h̄2
= 1

mx d
. (8)

Using equation (8) and applying the transformation

ki → k̃i = ki d i = x, y, (9)
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equation (7) becomes a system of differential equations for the dimensionless wavevector k̃
( ˙̃kx ,

˙̃k y

)
=
(
ωB + ω∗

Ck̃y, −ωx
C sin

(
k̃x

))
, (10)

where ωB = q Ed/h̄ is the BO frequency as in the absence of a magnetic field, and
ω∗

C = q B/m∗ and ωx
C = q B/mx denote the bulk GaAs cyclotron frequency and the cyclotron

frequency of a charge carrier with a constant bottom-miniband mass mx , respectively.
The first-order coupled differential equations (10) can be condensed into a second-order

differential equation

¨̃kx = −ω∗
C ωx

C sin(k̃x) = −ω2
C sin(k̃x), (11)

where

ωC = q B√
m∗mx

. (12)

Equation (11) is the pendulum equation with the dimensionless wavevector k̃x playing the part
of the pendulum’s deflection angle ϕ. ωC is the eigenfrequency for small amplitudes of k̃x .
Due to this analogy it is quite helpful to analyse the wavepacket dynamics using equation (11)
since it elucidates in a very clear manner the influence of the two parameters E and B on the
character of the motion.

The time-independent solutions k̃(t) = k̃stat = const of equation (10) resulting from

0 =
(
ωB + ω∗

Ck̃stat
y , −ωx

C sin
(

k̃stat
x

))
(13)

are
(

k̃stat
x , k̃stat

y

)
=
(

n π, −ωB

ω∗
C

)
n = 0,±1,±2, . . . . (14)

If one restricts the discussion to the first mini-Brillouin zone with |k̃x | � π , only n = 0
and the two equivalent solutions n = ±1 are to be considered. The two solutions correspond
to the upper unstable and the lower stable fixed point of the pendulum at ϕ = ±π and 0,
respectively. It can be seen from equation (5) that in both cases the group velocity along the
superlattice growth direction vanishes. In the y-direction, perpendicular to E and B, the charge
carrier has a constant drift velocity vstat

y = h̄ k̃stat
y /m∗ d = −E/B , which is determined only

by the ratio of E and B . At this point, the sum of all forces originating from external fields
vanishes (h̄ k̇stat = FL = 0). The magnetic component of the Lorentz force q v × B is exactly
compensated by the Coulomb force q E on the charge carrier.

2.2. The two regimes of motion

Depending on the ratio E/B , the charge carrier is in either one of two clearly separated regimes
of motion. Figure 2 illustrates this for k-space.

Projection onto the k̃x -axis shows one regime which corresponds to the oscillating
pendulum (lower part of figure 2), and another one which is analogous to the rotating pendulum
(upper part of figure 2).

In the first case, the magnetic field is strong enough to confine the motion of the charge
carrier to the first mini-Brillouin zone −π < k̃x < π , and the carrier oscillates around k̃x = 0.
This regime has been termed the bottom-miniband regime in [18], or the cyclotron-like regime
because of the analogy to carrier motion in bulk semiconductors under the influence of a strong
magnetic field.

In the other case, for dominating electric field, k̃x periodically crosses the mini-Brillouin
zone boundaries. The charge carrier moves along the whole cosine-shaped dispersion curve
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Figure 2. A charge carrier in a semiconductor superlattice under the simultaneous influence of a
magnetic and an electric field may be viewed in analogy to a rigid mechanical pendulum (right side).
Depending on the ratio E/B , different types of motion may be observed for propagation along k̃x

(left side).

since k̃x continuously increases (or decreases, depending on the sign of E). The resulting
carrier dynamics is very similar to that of pure BOs where k̃x increases linearly in time. Hence,
this regime has been named the magneto-Bloch or full-miniband regime.

The transition point, corresponding to the pendulum remaining at the upper fixed point, is
reached when the charge carrier remains located at k̃x = ±π (middle part of figure 2).

Although both types of motion lead to an oscillatory carrier dynamics in real space, the
dependence of the frequency on the external fields is different in the two regimes. Again, this
can be understood by recalling that k̃x obeys the non-linear pendulum equation (11). While k̃x

corresponds to the angle ϕ, ωC plays the part of the pendulum’s eigenfrequency ω = √
g/ l =

2π/T , where g is the gravitational acceleration, l denotes the length of the pendulum, and T
is the oscillation period. T and thus ω depend on the initial deflection angle ϕ0 and the initial
angular velocity ϕ̇0 at time t = 0, or equivalently, on the constant total mechanical energy (sum
of the kinetic and the potential energies) W tot = m(ϕ̇0l)2/2+mgl(1−cosϕ0) of the pendulum.
Here, m denotes the pendulum’s mass.

In the case of an oscillating pendulum, T increases when W tot is raised. This well
known result is a consequence of the fact that the back-driving force rises sublinearly with
the pendulum’s deflection ϕ. At a certain total energy W trans = 2 mgl, the pendulum will reach
its upper turning point (ϕ = ±π ) and remain there. Hence, T diverges when W tot approaches
W trans. Any slight increase of W tot will lead to a transition to rotation. With rising W tot, T
then decreases, since the amount of kinetic energy that can be converted to potential energy is
limited at fixed pendulum length l.

For W tot = W trans, the initial angular velocity ϕ̇trans
0 at which the transition between the

two regimes occurs evaluates to ϕ̇trans
0 = ω

√
2(1 + cos ϕ0). For the special case of ϕ0 = 0 this

further reduces to ϕ̇trans
0 = 2 ω. In analogy, the condition of transition for a wavepacket in a

semiconductor superlattice can be written as

˙̃k trans

x,0 = ωC

√
2
(

1 + cos(k̃x,0)
)

(15)
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and

˙̃k trans

x,0 = 2 ωC for k̃x,0 = 0. (16)

The special case of k̃x,0 = 0 is interesting since it can be prepared easily in the experiment via
excitation of the superlattice at the miniband edge. Then, k̃x,0 = k̃y,0 = 0. Applying these
initial conditions to equation (10) results in

˙̃kx,0 = ωB = q Ed

h̄˙̃k y,0 = 0,

(17)

which describe the motion of a charge carrier which initially is at rest, but is then accelerated
by the Coulomb force acting in the x-direction.

Obviously, the Bloch frequency ωB, with its magnitude determined by the absolute value
of the electric field E, corresponds to the initial angular velocity ϕ̇0 in the pendulum picture. On
the other hand, the cyclotron frequency ωC, determined by the absolute value of the magnetic
field B, acts as the back-driving force in the mechanical model. The stronger the back-driving
force, the higher the initial angular velocity needed in order to reach the transition point. Hence,
the transition between the magneto-Bloch regime and the cyclotron-like regime will depend on
the ratio of E and B .

The qualitative frequency dependence on the external fields E and B can be predicted
using the pendulum picture as follows. For a given electric field and absent magnetic field,
the wavepacket performs the well known BOs, characterized by a linear increase of k̃x .
The resulting oscillatory motion in real space originates from the dispersion relation of the
superlattice (see equations (4) and (5)). The case of k̃x increasing linearly in time corresponds
to a pendulum performing an unperturbed rotation without any gravitational influence (g = 0),
where ϕ(t) increases linearly. The total energy of the pendulum is simply its kinetic energy
which is determined by the initial angular velocity ϕ̇0 (electric field in the case of the charge
carrier). An increasing back-driving force corresponding to an increasing magnetic field will
slow down the rotation, resulting in a decrease of frequency. At a certain value of the back-
driving force (magnetic field), the pendulum (the charge carrier) will converge to the time-

independent solution at ϕ = π , ϕ̇ = 0 (k̃x = π , ˙̃kx = 0) where the oscillation period T
diverges, i.e., the frequency drops down to zero. A further increase of gravitational acceleration
(magnetic field) will then lead to an oscillatory type of motion with increasing frequency for
increasing g (B).

For a constant gravitational acceleration g (magnetic field B), the frequency’s dependence
on the initial angular velocity (electric field) is opposite. The frequency of the rotating
pendulum (Bloch-like motion) increases with rising initial angular velocity ϕ̇0 (E), i.e., for
increasing energy. In contrast, the frequency of the oscillating pendulum (cyclotron-like
motion) will decrease with increasing ϕ̇0 (E), since the maximal oscillation amplitude rises
and hence, as noted before, so does the oscillation period.

As can be seen from equations (16) and (17), the transition between the two regimes of
frequency behaviour occurs at

ωB = 2 ωC (18)

for a charge-carrier wavepacket created at the bottom of the miniband (k̃x,0 = k̃y,0 = 0). The
motion converges to the non-oscillatory solution with a vanishing velocity component vx along
the growth axis and a constant drift velocity vy = −E/B in the y-direction (equations (5)
and (14)). In the case ωB > 2 ωC, the charge carrier is in the magneto-Bloch or full-miniband
regime and k̃x increases monotonically but not necessarily linearly with time—like the rotating
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pendulum under the influence of gravitation, where the angular velocity ϕ̇ varies between a
maximum at ϕ = 0 and a minimum at ϕ = ±π without changing its sign. The direction of
rotation is preserved. If ωB < 2 ωC, the motion is cyclotron-like and more or less restricted to
the bottom of the miniband where the value of k̃x oscillates between ±κ with 0 < κ < π .

2.3. Analytical solutions for the oscillation frequency

2.3.1. Magneto-Bloch regime. More quantitative results for the oscillation period T , and
hence the oscillation frequency, can be obtained by solving equation (11) analytically. For the
mechanical pendulum, the total energy W tot and hence 2 W tot/ml2 = ϕ̇2 + 2 ω2(1 − cos ϕ) =
ϕ̇2 + 4 ω2 sin2(ϕ/2) are constants. In analogy, the dimensionless wavevector obeys the relation

C = ˙̃k2

x + 4ω2
C sin2

(
k̃x/2

)
. (19)

With equation (17), the constant C evaluates to C = ˙̃k2

x,0 = ω2
B for the special case of a

wavepacket generated at the bottom of the miniband (k̃x,0 = k̃y,0 = 0). Solving equation (19)
for the time t results in

t = 2
∫ k̃x /2

0

√
1

ω2
B − 4ω2

C sin2(β)
dβ. (20)

If the charge carrier performs a magneto-Bloch-type motion, and ωB � ωC the integral in
equation (20) can be solved approximately by expanding the square root up to the first order:

t ≈ k̃x(t)

ωB
+ J

ωB

∫ k̃x /2

0
sin2(β) dβ, (21)

where J = ( 2 ωC
ωB

)2 � 1. In general,
∫

sin2(β) dβ = −sin(2β)/4 + β/2 + const, but since we
are only interested in the harmonic part of the wavepacket’s velocity at the moment, i.e., only
want to investigate how the fundamental frequency evolves with increasing magnetic field,
we determine the average slope of k̃x(t) by calculating k̃x(t)/t for t → ∞. In this case,
k̃x(t) � sin(k̃x(t)), and the term −sin(k̃x)/4 can be neglected. We obtain

k̃x(t) ≈ ωB

(
ω2

B

ω2
B + ω2

C

)
t = ωMB t . (22)

Because of ωC � ωB, the magneto-Bloch frequency ωMB introduced in equation (22) can
be approximated by

ωMB ≈ ωB − ω2
C

ωB
. (23)

The principal dependences of the oscillation frequency on the external fields are as
expected from the qualitative discussion above. An increasing electric field (increasing ωB)
raises ωMB; an increasing magnetic field (increasing ωC) leads to a decrease of ωMB. For larger
ratios of ωC and ωB (larger J ), the Taylor expansion of the square root in equation (20) must be
extended beyond the first-order term. Neglecting the numerous trigonometric terms originating
from the integration of sinn(β) (n = 2, 4, . . .), which again are not relevant for the fundamental
frequency (they only cause k̃x(t) to additionally oscillate while growing monotonically), results
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Figure 3. Bold line: first-order approximation of the magneto-Bloch frequency according to
equation (23). Dotted line: magneto-Bloch frequency obtained by Taylor expansion up to 50th
order. This solution is close to reality; a comparison with an expansion to 250th order (not
shown) exhibits visible deviations only for values of ωC/ωB > 0.48. Inset: influence of the
neglected trigonometric term in the solution of equation (21) on k̃x . The straight line corresponds
to the relation between time t and wavevector k̃x of equation (22) calculated with ωC = 0.49 ωB

(J = 0.95) in order to enhance the effect (note that for this large value of J equation (21) is not a
very good approximation any more).

in

t = 2k̃x

ωB

(
1

2
+ 1

8
J + 9

128
J 2 + 25

512
J 3 + 1225

32 768
J 4 + 3969

131 072
J 5 + · · ·

)
= 2k̃x

ωB
f (J ).

(24)

This relation can be used to derive ωMB = k̃x/t by expanding 1/ f (J ) around ωC = 0 to higher
orders:

ωMB = ωB − ωC
2

ωB
− 5

4

ωC
4

ωB
3

− 11

4

ωC
6

ωB
5

− 469

64

ωC
8

ωB
7

− . . . . (25)

A comparison with equation (23) shows that the first two terms are identical. For higher
magnetic fields, the frequency decreases faster than expected by the simple equation as
illustrated in figure 3. Here, the first order approximation (equation (23)) and a solution
originating from a Taylor expansion up to the 50th order are depicted. The decrease of the
frequency toward zero for ωB → 2ωC (as expected from the pendulum picture) is clearly visible
for the higher-order approximation (equation (25)). The inset of figure 3 depicts the influence
of the neglected trigonometric term in the solution of equation (21) on k̃x(t). In the case of
the expansion according to equation (24), the consideration of the respective trigonometric
terms would lead to even stronger additional oscillations, but again these oscillations take place
around a straight line with its slope corresponding to the fundamental frequency ωMB of the
system. This is fully analogous to the behaviour of the pendulum. For a very fast rotation of
the pendulum (magneto-Bloch regime of the charge-carrier motion), the angle (k̃x ) increases
almost linearly in time. When the pendulum slows down, its angular velocity becomes more
and more influenced by the back-driving force (magnetic field). The pendulum will move
faster around its rest position than around its upper point of return; the angular momentum and
of course the angle itself are modulated periodically. The motion is not harmonic any more.
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2.3.2. Cyclotron-like regime. In the case of large magnetic fields, one expects an oscillatory
solution of the pendulum equation and small values of k̃x . One therefore approximates sin(β)

by β in equation (20), so that for the oscillation period and subsequently for k̃x there follows

t = 1

ωC
arcsin

(
k̃x(t)

ωC

ωB

)
	⇒ kx(t) = ωB

ωC d
sin(ωC t). (26)

With equation (5) and the definitions of ωC and ωB (equations (1), (12)), and with equation (8),
we obtain for the velocity along the growth axis

vx = �d

2h̄
sin (kx(t) d) ≈ �d

2h̄
kx(t) d = E

B

√
m∗

mx
sin(ωC t). (27)

Hence, in the limit of a very large magnetic field, the charge-carrier wavepacket oscillates with
the cyclotron frequency ωC, which is a linear function of the magnetic field, and independent
of the electric field.

3. Numerically calculated wavepacket trajectories

The numerical solution of the equation of motion permits us both to determine the exact
temporal behaviour of the wavepacket oscillations across the whole range of electric and
magnetic fields and to visualize the charge-carrier trajectories both in k-space and in real space.
We numerically integrate the differential equation for the vector u

u = (u1, u2, u3, u4)
T = (k̃x , k̃y, x, y)T (28)

for the initial condition u(0) = 0. This condition corresponds to the excitation of a wavepacket
at the bottom of the miniband, as done in the experiments. With the differential equation (10)
for k̃x and k̃y , and with equations (5) for the velocities vx and vy , the differential equation for u
can be written as

d

dt
u =






ωB + ω∗
C u2

−ωx
C sin(u1)

� d
2 h̄ sin(u1)

h̄
m∗ d u2






. (29)

The calculations are performed for q = e (positive elementary charge), a miniband width
� = 20 meV, a superlattice period of d = 11.4 nm, and conduction-band mass parameters
m∗ = 0.068 m0 and mx = 2h̄2

�d2 = 0.058 m0 (see equation (8)), with m0 being the rest mass of
an electron in vacuum.

3.1. Numerical calculations for k-space

We begin by studying the time dependence of the dimensionless wavevector k̃x in more detail.
Figure 4 shows k̃x -transients in the magneto-Bloch regime for an electric field of

5 kV cm−1 and magnetic fields between 0 and 1.554 T. The transition to the cyclotron-like
regime occurs at a magnetic field of about BT = 1.554 48 . . . T. At zero magnetic field (pure
BOs), k̃x increases linearly in time and its slope corresponds to the BO frequency ωB. With
increasing magnetic field, the trajectories become periodically modulated while their overall
slope sinks. The latter is related to the reduction of the fundamental frequency of the charge-
carrier oscillations in real space, while the modulation of the k-space trajectories leads to
overtones in the frequency spectrum. The plots of figure 4 underscore why this regime of
motion has been termed the magneto-Bloch regime: despite the influence of the magnetic field,
k̃x increases monotonically without any restrictions as for pure BOs.
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Figure 4. Temporal evolution of k̃x for a constant electric field of 5 kV cm−1 and various magnetic
fields in the magneto-Bloch regime. The values ±1 of the dimensionless quantity k̃x /π delimit the
first Brillouin zone.
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Figure 5. Temporal evolution of k̃x for a constant electric field of 5 kV cm−1 and various magnetic
fields in the magneto-Bloch and the cyclotron-like regimes of motion.

The transition to the cyclotron-like regime of motion takes place when the modulation of k̃x

by the magnetic field becomes so strong that k̃x runs parallel to the time axis at its flattest points

( ˙̃kx = 0). The transition is illustrated in figure 5. In the cyclotron-like regime, ˙̃kx changes sign
time and again. The result is an oscillatory confinement of k̃x within the first mini-Brillouin
zone. The oscillation frequency increases with B as known for cyclotron oscillations, which
underscores the reason for the term cyclotron-like.

Figure 6 displays the motion of a wavepacket on the energy contour of the two-dimensional
(k̃x ,k̃y)-space for an electric field of 5 kV cm−1 and various magnetic fields. The figure once
more illustrates the fundamental difference between the trajectories in the two regimes. In the
magneto-Bloch regime (1.2 and 1.5 T), the wavepacket can overcome the boundary between
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Figure 6. Charge-carrier trajectories on the energy-band contour (grey-shaded surface) of the
superlattice for four different magnetic fields, but constant electric field (5 kV cm−1). The
trajectories are open in the magneto-Bloch regime (1.2 and 1.5 T), but form closed loops in the
cyclotron-like regime of motion (1.8 and 3.0 T). The curve for 1.8 T is not completed for clarity.
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Figure 7. Two trajectories close to the transition between the regimes. The difference in magnetic
field is only �B = 10−5 T.

the first and the second mini-Brillouin zone at k̃x = π , and the result is an open curve in k-
space. In the cyclotron-like regime (1.8 and 3 T), the curves are closed and lie within the first
mini-Brillouin zone.

Figure 7 displays two trajectories just barely above and below the transition, with the
difference in magnetic field being �B = 10−5 T. A trajectory directly at the transition would
start at k̃x = 0 and stop and remain at k̃stat

x = π (the stationary solution corresponding to a
wavepacket drifting at a constant velocity in real space). Slightly off the transition point, the
trajectories are nearly impossible to distinguish from this one, until very close to k̃stat

x = π

(marked by an arrow) they branch off into different directions, in one case running in a closed
loop, in the other case along an open path.
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Figure 8. Regions in E–B parameter space where the charge carriers can undergo optical-phonon
emission (area shaded in grey). The transition between the magneto-Bloch and the cyclotron-
like regimes of motion is indicated by a dashed line. Optical-phonon emission is possible in the
cyclotron-like regime in the vicinity of the transition.

We end this section by noting that a study of the trajectories in (k̃x , k̃y)-space (see the last
two figures) can also help to identify optical-phonon scattering channels which contribute to
energy loss and dephasing of the wavepackets. Although the miniband width of � = 20 meV,
assumed in our simulations, is smaller than the optical-phonon energy of Eph = 36.8 meV
for GaAs, it would be incorrect to assume that scattering by emission of optical phonons is
inactive [31, 32]. In particular, close to the transition between the two regimes of motion, the
energy contribution of wavepacket motion along the y-direction can be substantial, raising the
total kinetic energy of the wavepackets periodically to values well above Eph.

For the superlattice parameters considered here, figure 8 shows the values of the electric
and magnetic fields, for which the charge carriers can reach kinetic energies above Eph and
suffer energy and phase loss by optical-phonon emission. For our parameters, this is mainly
the case in the cyclotron-like regime.

3.2. Numerical calculations for real space

We now come to a detailed investigation of real-space carrier motion.
Figure 9 shows calculated charge-carrier trajectories in real space for a constant electric

field of 5 kV cm−1 and various magnetic fields. All trajectories are plotted for a time window
of 5 ps after excitation of the carrier at t = 0 at the position x = y = 0 and with initial speed
ẋ = ẏ = 0. The x-values are given in units of the superlattice period d .

The trajectories for 1.3 and 1.55 T are representative for the magneto-Bloch regime, those
for 1.6 and for 2 T for the cyclotron-like regime of motion; 1.554 4819 . . . T corresponds to
the magnetic field BT at the transition between the two regimes. As mentioned before, in this
case all oscillations disappear, as the charge carrier is accelerated to a constant drift velocity
along the y-axis, i.e., along the direction perpendicular to both the electric and magnetic fields.
The other trajectories exhibit an oscillatory cycloid-like shape. Concerning the oscillation
frequency, we find confirmed what we have discussed before. For dominating electric field,
in the magneto-Bloch regime, the frequency decreases with increasing magnetic field. On the
other hand, in the cyclotron-like regime of motion, for dominating magnetic field, it increases
as known from pure cyclotron oscillations.
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Figure 9. Wavepacket trajectories in real space for a constant electric field of 5 kV cm−1 and
various magnetic fields as indicated in the figure. The charge carrier is initially (t = 0) at the upper
left corner of the plot (x = 0, y = 0). Shown are the first 5 ps of the motion at the transition (bold
type), in the magneto-Bloch (1.30 and 1.55 T) and in the cyclotron-like regimes of motion (1.60 and
2.0 T).

Although the trajectories in the two regimes may look similar at first glance, they exhibit
one fundamental difference: a change in curvature at approximately half of the maximum
amplitude only observed in the cyclotron-like regime. The curvature change can be seen nicely
in the trajectory for 1.6 T. Recalling the oscillatory nature of wavepacket motion in k-space
in this regime, this feature can be associated with the slowing down of the wavepacket and
its stopping at the point of return in k-space before it is accelerated downwards again. In real
space, the direction of motion does not change during the reversal of the propagation direction
in k-space because the sign of ∂ε(k)

∂k and hence the sign of the group velocity of the wavepacket
(see equation (3)) do not change.

A striking feature of the real-space trajectories is the strong increase of the maximum
displacement along the x-axis for rising magnetic field in the vicinity of the transition. The
largest displacement is reached in the cyclotron-like regime. In the following, we investigate
the field dependence of the x-displacement in more detail.

3.2.1. Maximum spatial x-displacement. An analytical determination of the maximum spatial
displacement is possible based on the formal integration of the following expression for vx

obtained from equations (5) and (11):

vx = −� d

2 h̄

¨̃kx

ω2
C

. (30)

Integration results in

x =
∫

vx dt + C = C − � d

2 h̄

˙̃kx

ω2
C

. (31)

With the initial conditions x(0) = 0 and k̃x(0) = k̃x,0 = 0, we obtain with equation (7)

x = � d

2 h̄

1

ω2
C

(
ωB − ˙̃kx

)
. (32)
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˙̃kx can be substituted with the help of equations (19) and (17), which result in

ω2
B = ˙̃k2

x + 4 ω2
C sin2(k̃x/2), (33)

yielding

˙̃kx = ±
√

ω2
B − 4 ω2

C sin2(k̃x/2). (34)

We first consider the magneto-Bloch regime (ωB > 2ωC). In analogy to the rotating

pendulum, which can rotate either left- or right-handedly, ˙̃kx does not change sign any more
after the motion has started. The sign itself depends on the direction of the electric field E

which determines the sign of the initial value of ˙̃kx . With both q and E chosen to be positive,

equation (17) yields ˙̃kx(0) = +|ωB|, which fixes the sign in equation (34) to be positive. From
equations (32) and (34), the displacement evaluates to

x = � d

2 h̄

ωB

ω2
C

(

1 −
√

1 − 4
ω2

C

ω2
B

sin2(k̃x/2)

)

. (35)

The maximum displacement xmax is reached for k̃x = π :

xmax = � d

2 h̄

ωB

ω2
C

(

1 −
√

1 − 4
ω2

C

ω2
B

)

. (36)

For small magnetic fields, we approximate


1 −
√

1 −
(

2
ωC

ωB

)2


 ≈ 2
ω2

C

ω2
B

, (37)

and obtain the following result for xmax:

xmax = � d

h̄

1

ωB
= 2L . (38)

As expected, xmax/2 converges to the spatial amplitude L of pure BOs [33–35]. With
increasing magnetic field (increasing ωC), xmax increases steadily and reaches its maximum
at the transition. There, ωB = 2ωC, resulting in

xmax, MB = � d

2 h̄

ωB

ω2
C

= � d

2 h̄

4

ωB
= 4L . (39)

In the case of the cyclotron-like regime of motion (ωB < 2ωC), ˙̃kx changes sign time and

again (oscillating pendulum) and equation (32) becomes maximal when ˙̃kx reaches its minimal
value of −ωB (equation (34)), so that

xmax = � d

h̄

ωB

ω2
C

. (40)

With increasing magnetic field, xmax decreases towards zero. Its maximum is at BT and amounts
to

xmax, cyclo = � d

h̄

4

ωB
= 8L . (41)

The dependence of xmax on the ratio ωC/ωB is shown in figure 10. The discontinuity at
the transition between the two regimes can be explained by considering the pendulum for two
slightly different total energies, one being just above, the other just below the critical (transition)
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Figure 10. Maximum spatial wavepacket displacement (full swing) in units of the amplitude L
of pure BOs versus the ratio ωC/ωB. Note the discontinuity at ωC = ωB/2, i.e., at the transition
between magneto-Bloch and cyclotron-like regimes.

value. In the first case, the energy is sufficient for the pendulum to overcome the upper unstable
fixed point, in the other case not. Let us consider the motion starting at an angle of ϕ = 0.
When the pendulum moves towards the unstable fixed point at ϕ = π , it can pass it in the first
case, but in the second case stops for a moment and reverses direction before reaching the fixed
point. In both cases, ϕ = 0 is reached again after nearly the same time interval t ′ but with the
pendulum moving in opposite directions. In the first case, one oscillation period is then over,
while only half a period has elapsed in the second case.

Recalling that ϕ and k̃x correspond to each other, we can now consider the real-space
velocity vx of a charge carrier in the superlattice. Employing vx ∝ sin(k̃x) (equation (5)), we
find that vx , in the magneto-Bloch regime, is positive during the first half of the time interval
t ′ and negative during the second half. After t ′, the charge carrier is back at its starting point
in real space. In the cyclotron-like regime, instead, vx remains positive during the whole time
range t ′ and only afterwards changes sign. This implies that the charge carrier reaches its
maximum displacement from the starting point only at t = t ′. If the total energies are similar
in the two cases, the similar absolute values of the speed during the time interval explain that
the maximal displacement is twice as large in the cyclotron-like regime.

3.2.2. Time-averaged spatial x-displacement. Considering now x̄ , the average spatial
displacement in the x-direction, one finds that the values for the two regimes converge at the
transition point. This can be illustrated nicely with the help of figure 11, which plots the time-
dependent displacements x(t) in the vicinity of the transition point. In both regimes of motion,
the charge carriers spend much of the time at a distance close to xmax, MB = 4L, the maximum
displacement of the magneto-Bloch regime. Only for a relatively short time—and with an ever
lower frequency as the transition is approached, their motion over- or undershoots this x-value.

The average spatial displacement in the cyclotron-like regime of motion is only half the
respective maximum value xmax, cyclo = 8L. In contrast, in the magneto-Bloch regime, the
average displacement is somewhat smaller than xmax, MB, but increases towards this value as
the transition is approached. The average displacements in both regimes hence converge at
xmax, MB = 4L at the transition, so that the average spatial displacement does not show a
discontinuity here.
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Figure 11. Time dependence of the spatial wavepacket displacement along the superlattice growth
direction illustrating the difference between maximum and average displacement (xmax and x̄ ,
respectively) in the two regimes of motion.

3.3. THz-emission spectroscopy—expected transients and their frequency spectrum

The non-linear character of the wavepacket dynamics suggests that experimental signatures
of the periodic wavepacket motion should exhibit a spectrum of frequencies and not only the
fundamental frequency. In this section, we calculate the expected waveforms of THz transients
emitted by the oscillating charge carriers and investigate their frequency spectrum.

In [19], we have presented time-domain THz-emission data where the radiation originates
from the dipole moments associated with the motion of the charge carriers in the y-direction,
i.e., perpendicular to the superlattice growth direction. Quantitatively, the electric field
strength of the detected radiation ETHz,y is proportional to the second time derivative of the
corresponding component of the polarization Py [36, 37]:

ETHz,y ∝ d2 Py

dt2
∝ q v̇y . (42)

Figure 12 displays numerically calculated data of ETHz,y for a constant electric bias field of
5 kV cm−1 and for magnetic fields between 0.1 and 3.5 T. In order to be close to experimental
reality, dephasing with a time constant of 1 ps is assumed. One can clearly distinguish the
manifestations of the two regimes of motion with their different magnetic-field dependences of
the fundamental frequency. In addition, one identifies the transition region where the amplitude
of the oscillations decreases and higher harmonic frequencies contribute to the signal. Directly
at the transition, the oscillations vanish (not displayed in the figure). We remark that, except
for the direct vicinity of the transition region, the higher harmonics may be difficult to identify
in measurements when these exhibit some measure of noise.

Figure 13 shows the frequency spectra of numerically calculated THz transients, now for
a constant magnetic field of 1 T and electric fields between 2.5 and 4 kV cm−1 varied in small
steps of 10−4 kV cm−1. For the sake of clarity with respect to the higher harmonics, damping
is omitted here. The grey scales are a measure for the amplitude: darker regions correspond
to higher amplitudes in the frequency spectra. The time interval used for the Fourier analysis
amounts to 50 ps, resulting in a frequency resolution of 20 GHz, which gives rise to the step-
like shape of the curves. Besides the opposite frequency dependence in the two regimes, the
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Figure 12. THz transients calculated for a constant electric bias field of 5 kV cm−1 and magnetic
fields between 0.1 and 3.5 T (step width: 0.1 T). Dephasing with a time constant of 1 ps is assumed.
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Figure 13. Frequency spectra of numerically calculated THz transients for a constant magnetic
field of 1 T and electric fields between 2.5 and 4 kV cm−1 varied in steps of 10−4 kV cm−1. The
amplitude is indicated by grey scales with dark regions corresponding to high amplitudes. The step-
like shape is caused by the time window of the Fourier analysis of 50 ps, resulting in a frequency
resolution of 20 GHz. The arrow marks the transition point.

plot shows the sudden decrease of the frequencies and the simultaneous decrease of the overall
signal amplitude towards the transition.

As mentioned above, higher harmonic frequencies become more important in this region.
While only odd harmonics contribute in the cyclotron-like regime of motion, the frequency
spectra in the magneto-Bloch regime close to the transition contain even and odd harmonics.
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of the velocity along the superlattice growth direction (lower part) calculated for a constant electric
field of 5 kV cm−1 and a magnetic field which is smaller by �B = 5 × 10−5 T than the magnetic
field BT = 1.554 4819 . . . T at the transition (magneto-Bloch regime, left side), respectively by the
same amount larger than BT (cyclotron-like regime, right side).

This can be understood in the following way. From equations (5), (6) and (42) one obtains

v̇y = h̄

m∗ k̇y = h̄

m∗

(
−q

h̄
Bvx

)
= −ω∗

C vx , (43)

and therefore the relation

ETHz,y ∝ −ω∗
C vx . (44)

The electric field strength of the emitted THz radiation is hence proportional to the wavepacket
velocity vx = ẋ in the x-direction.

The time dependence of this quantity is shown in the lower part of figure 14 for both the
magneto-Bloch and the cyclotron-like regimes of motion. The upper part of the figure displays
the spatial x-displacement (compare figure 11). The figure illustrates that the function vx(t),
when shifted by half its period, results in −vx(t) in the cyclotron regime, hence it is sufficient
to employ odd harmonics in the Fourier analysis of vx(t). In contrast, such a symmetry does
not exist in the magneto-Bloch regime, and one needs even and odd Fourier components to
reproduce vx(t).

3.4. Internal electro-optic sampling—expected frequency spectrum

Another experimental technique which we have applied for the investigation of the coherent
Hall effect is time-resolved internal electro-optic sampling either in transmission (TEOS) or in
reflection (REOS) [21]. It probes essentially the polarization Px associated with the wavepacket
oscillations in the x-direction [13, 38, 39]:

EO-signal ∝ Px ∝ q x . (45)

Figure 15 shows calculated TEOS transients for a fixed electric field (5 kV cm−1) and a series
of magnetic fields (from 0.1 to 3.5 T in steps of 0.1 T). Damping with a time constant of 1.2 ps
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Figure 15. TEOS transients calculated for a constant electric bias field of 5 kV cm−1 and magnetic
fields between 0.1 and 3.5 T (0.1 T steps). Dephasing with a time constant of 1.2 ps is assumed.

is assumed. The transients exhibit again the characteristic signatures of the two regimes of
carrier motion. Close to the transition, one identifies anharmonic signal components but they
appear to be less pronounced than in the THz-emission transients (see figure 12).

Figure 16 compares the Fourier spectra of calculated TEOS signals with those of calculated
THz-emission waves. The spectra exhibit a major difference in that the TEOS signal remains
strong at the transition while the THz-emission data taper off in this range. The strongest TEOS
signal is in fact observed in the cyclotron-like regime very close to the transition, because both
the spatial wavepacket displacement and its time derivative are large here. The THz-emission
signal, originating from carrier motion parallel to the quantum-well planes (y-direction), on the
other hand, becomes weak, because all wavepacket oscillations disappear at the transition and
only the initial carrier acceleration contributes to the signal.

The weakening of the THz-emission signal towards low magnetic fields is related to the
fact that the magnetic field becomes less effective in bending the real-space trajectories of
the carriers away from the x-direction and into the y-direction. Quite in contrast, the THz-
emission signal is strong (while the TEOS signal becomes weak) for very high magnetic fields
just because of the strong trajectory bending.

Interestingly, the relative contribution of higher harmonics is larger in the THz radiation
than in the TEOS signal. To some degree, this is a consequence of the different orientations of
the relevant polarization components. More important, however, is the fact that THz emission
depends on the second time derivative of the polarization, while TEOS is determined by the
polarization itself. In order to illustrate this, let us consider a polarization given by a Fourier
series P(t) = ∑

n An exp(inωt). The TEOS signal then reproduces the contribution at the
fundamental frequency ω and the higher harmonics with relative weights as given by the
coefficients An . The THz radiation, on the other hand, reproduces each frequency component
with a weight of n2ω2 An. Because n2 enters the weight factor, higher harmonics are more
pronounced.
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Figure 16. Comparison of the Fourier amplitude spectra of a calculated TEOS signal (upper
part) and a THz-emission wave (lower part). The calculations assume a constant electric field of
5 kV cm−1; the strength of the magnetic field is varied from 0.1 to 3.5 T in steps of 0.1 T. Dephasing
is neglected for clarity; the line width of the spectral features is determined by the time window of
16 ps of the calculations.

4. Summary

In conclusion, we have investigated the electron wavepacket motion in a superlattice subjected
simultaneously to an electric field in the growth direction and to a perpendicular magnetic
field. The coherent electron dynamics has been studied for low carrier density by a numerical
evaluation of the semiclassical, scattering-free, single-particle equation of motion. As it is
analogous to the pendulum’s equation of motion, one obtains two regimes of motion. The focus
of our study has been on the transition between these two regimes, which are characterized
by magneto-Bloch oscillations respectively cyclotron-like oscillations of the carriers. The
oscillation frequency collapses to zero at the transition and the spatial displacement of the
carriers upon crossing of the transition is discontinuous, reaching a maximum value of
eight times the Bloch-oscillation amplitude when the transition point is approached from the
cyclotron-like regime. We have shown that the electrons gain substantial kinetic energy much
larger than the miniband width in the vicinity of the transition. In addition, the motion is highly
anharmonic there with the wavepacket oscillations containing higher harmonics. Only odd
harmonics appear in the cyclotron-like regime, while even and odd harmonics contribute in the
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magneto-Bloch regime. Finally, a simulation of both THz-emission and internal-electro-optic-
sampling spectroscopy predicts the former to be better suited for an experimental study of the
higher harmonics.
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Köhler K 1994 Phys. Rev. B 50 14389
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Dekorsy T, Leisching P, Waschke C, Köhler K, Leo K, Roskos H and Kurz H 1994 Semicond. Sci. Technol.

9 1959
[12] Roskos H G, Waschke C, Schwedler R, Leisching P, Dhaibi Y, Kurz H and Köhler K 1994 Superlatt. Microstruct.
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